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Compressible-flow channel flutter 
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The effect of fluid compressibility on the dynamic stability of a two-dimensional flow 
through a flexible channel is analysed. The compressibility parameter Q is defined 
as the ratio of a reference elastic wave speed of the wall to the local speed of sound. 
As the fluid speed increases, the walls become dynamically unstable at the critical 
fluid speed 8, and start to flutter at  critical frequency wo. The effect of three other 
dimensionless parameters on the critical condition is also analysed. These are the ratio 
y of fluid damping to wall damping, the ratio B of wall bending resistance to elastance, 
and the ratio ,u of wall to fluid mass. Nonlinear analysis using the PoincarkLindstedt 
method shows stiffening at supercritical speeds. Further stability analysis using the 
method of multiple scales shows that the amplitude growth is finite and the nonlinear 
fluttering state is stable. Both symmetric and antisymmetric modes of oscillation are 
analysed. A frictionless system is found to be a singular case in the nonlinear theory. 
The hydraulic approximation employed in the analysis is shown to be a particular 
limiting form of the corresponding Orr-Sommerfeld system. 

1. Introduction 
The study of flow through flexible tubes has received impetus from its application 

to a variety of physical situations ranging from strictly engineering contexts to 
biomedical phenomena (Grotberg & Davis 1980; Gavriely et al. 1984). The conveyed 
fluids of interest include both gases ana liquids, while their surrounding conduits can 
have the rigidity of metals or the softness of biological tissue. Grotberg & Reiss (1984) 
have previously investigated incompressible flow through a flexible two-dimensional 
channel, and showed that, in the presence of wall damping, flutter instability occurs 
only when fluid damping is included in the model. The predictions of this theory de- 
pend on several parameters, including the fluid speed U and the wall elastic speed C. 
Modelling the flow as incompressible assumes that the sound speed a is much larger 
than either of these two characteristic speeds, i.e. 

This assumption is not justified in general, because the variety of physical applications 
includes parameter ranges where either Q or M or both are not negligible. 

Flow of a compressible fluid over one side of a single flexible surface has been 
examined by Dowel1 (1967) with regard to aeronautical applications of panel flutter. 

t Also at Department of Anesthesia, Northwestern University Medical School, 303 East Chicago 
Avenue, Chicago, Illinois 6061 1 .  
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His theory for a three-dimensional plate, simply supported on all sides, employs 
inviscid potential-flow theory and von Karm6n’s large-deflection plate equation. That 
theory predicts flutter instability for supersonic flows, M > 1, but static divergence 
instability for subsonic flows, M < 1. In  a later paper, Matsuzaki & Fung (1979) 
examined the static divergence of a two-dimensional flexible channel section, initially 
treating the full compressible-fluid effects but neglecting fluid viscosity. Their 
analysis is eventually simplified, however, by ignoring terms of order M2 (which 
discards any contributions from compressibility) in their scaled mass-conservation 
equation. Consequently, the question of how sound speed affects the static stability 
of their system, which is raised early in the paper, remains to  be answered. 

We develop in $2 an analysis of viscous compressible flow through a flexible channel 
to  determine how compressibility alters the dynamic flutter instability discussed in 
Grotberg & Reiss (1984). The von Karman nonlinear plate theory is used to  model 
the channel walls, and the fluid damping is modelled by a hydraulic approximation. 
A complete solution to  the coupled fluid and elastic equations would involve a 
complicated Orr-Sommerfeld system subject to  kinematic and stress boundary 
conditions at the unknown wall position. The difficulty of solving such a problem 
warrants a simpler approach by employing a hydraulic approximation to model the 
viscous-fluid effects. We replace the viscous term of the Navier-Stokes equations with 
a term linearly related to  the fluid velocity, -2f*u*. The consequence of this 
substitution is discussed in $7 ,  where i t  is shown that the hydraulic approximation 
leads to a stability theory that is a particular limit of the full On-Sommerfeld system. 
The linear stability of this fluid-elastic system is studied in $3, where we show that 
the channel loses stability by flutter. I n  $ 4  we employ the Poincar&Linstedt 
perturbation method to  examine the supercritical bifurcation of flutter states. The 
stability of these flutter states is established in $5 by solving the initial-value problem 
using the multitime method, showing that a limit cycle is reached which corresponds 
to  the predictions of $4. The growth rate of the unstable oscillations to the stable 
limit cycle is examined as a function of compressibility. Section 6 pertains to the 
frictionless problem and the difficulties that  arise when examining the nonlinear 
theory. 

2. Problem formulation 
Figure 1 shows the infinite channel comprised of parallel flexible plates conveying 

a viscous compressible fluid, The plates have thickness h, bending stiffness D,  
elastance E ,  density pw, and linear damping coefficient g * .  The channel gap is of 
average width 2b and contains a fluid with unperturbed density pf,  and sound speed 
a, which flows in the positive-x direction at average speed U .  For brevity, the 
governing equations will be presented in dimensionless form. The conversion to 
dimensional quantities is given in Appendix B. 

The continuity equation for the compressible fluid is 

where Q = C/a and S = U/C. Here we have neglected the damping term due to  
viscosity, since we assumed the quantity vlab is negligibly small. Note that the Mach 
number is M = QS. The velocity potential 0 satisfies (2.1) subject to the kinematic 
boundary conditions at the upper and lower walls. These may be simplified by 
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FIGURE 1. An infinite, two-dimensional channel conveying a viscous compressible 
fluid. Two modes of deformation are shown. 

selecting the symmetric mode and antisymmetric mode of disturbances for con- 
sideration (see figure 1). The conditions on @ at the channel midplane are then 

@z = 0, z = 0 symmetric, ( 2 . 2 ~ )  

@ = 0, z = 0 antisymmetric, (2 .2b)  

while for either mode the lower wall condition is 

W,+@, W X - a z  = 0 for z = W ,  (2.3) 

where W = W(z ,  t )  is the unknown position of the lower wall. By solving (2.1)-(2.3),  
we can, in principle, find @ as a function of W. The fluid pressure P can be derived 
from @, and hence W ,  by using the unsteady Bernoulli equation, 

P = P a - [ @ t + p @ * V @ + 2 f @ ] ,  (2 .4)  

which contains the scaled friction factor f as a dimensionless parameter. The steady 
driving pressure is Pa. The final governing equation is the stress boundary condition 
for the lower plate. Using the one-dimensional von KBrmBn nonlinear plate equation 
for periodic disturbances, we have 

,u~,+2gW,+BWx...+(l+ W)-dW,, (Wx)2dx:+P-Pe = 0 for z = W. 

(2 .5)  
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The dimensionless parameters are (see Appendix B) the ratio p of wall mass to fluid 
mass, the wall damping g, the ratio B of bending stiffness to elastance, the coefficient 
d of nonlinearly induced wall tension and the wavelength h of x-periodic disturbances. 
The external pressure P, is chosen to keep the undisturbed channel walls parallel. This 
equilibrium position is at z = W = - 1,  which cancels the spring-loading term of (2.5). 
By inserting P as a function of W into (2.5), we have reduced the problem to one 
equation with one unknown variable. 

The basic state of (2.1)-(2.5) will be defined as uniform plug flow with Cartesian 
velocity components u, = V@, = (S, 0) and constant lower-wall position W, = - 1. 
The parameter S is our dimensionless speed index scaled on the wall velocity C. The 
friction factor causes a linear pressure drop in the flow direction, P,, = -2fS, which 
must be balanced by P,. It is apparent that @,, W, and Po are solutions to the 
governing equations for all values of the parameter S. The formulation of this problem 
differs from that in Grotberg & Reiss (1984) by the compressibility term in (2.1). The 
incompressible limit in the present analysis is obtained by setting Q = 0. 

3. Linear stability theory 
We study the stability of this system by perturbing i t  with travelling-wave 

disturbances that are linearized about the basic-state plug flow. The linear stability - -  
theory can be represented in compact form as 

L. !Pl = 0, 

where Y1 is a three-component vector, 

@1(x, - 1, t )  

and L is the matrix differential operator 

L =  

0 0 

0 - ( , u ~ + 2 g ~ + B & + l  

0 

(3 . la)  

(3.1 b )  

subject to the midplane boundary conditions (2.2). 
The solution of (3.1) for the symmetric mode has the form 

(3.2) 

where B = kx-wt ,  k = 2x/h, is the radian frequency and A is an arbitrary complex 

= A  

i( w - k S )  [ q sinh ; ‘Osh “1 
i(w - k S )  
q tanhq 

eie+c.c., 
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constant ; C.C. denotes complex conjugate. The characteristic equation for the 
symmetric-mode complex frequency is derived by substituting (3.2) into (3.1) : 

w 2 ( l + p q  tanhq)+2w[-kS+i(f+gq tanhq)]-((1 +Bk4)q  tanhq+(kS)2-2iflcS = 0, 

where q is defined by 

We investigate the critical condition of neutral stability by setting Im (0) = 0 and 
separating .(3.3) into its real and imaginary parts: 

(3.3) 

q2 = k2-Q2(w-kS)2. (3.4) 

w2(1+,uq tanhq)-2u(kS)-(1+Bk4)q tanhq+(kS)2 = 0, (3.5a) 

w(y+pq tanhq)-ykS = 0, (3.5b) 

where y = p / g *  is the ratio of fluid damping to wall damping. We will find that these 
two damping effects only appear as a ratio. In  the case of Q = 0 we see that q = k, 
and (3.5a, b) readily uncouple to solve for the fluid speed S(k)  and the real frequency 
w(k) as in Grotberg & Reiss (1984). For Q + 0, however, (3.5) are mixed algebraic- 
transcendental forms. If we could find S(k)  explicitly for Q + 0 we would seek its 
minimum value with respect to k and define it as the critical flutter velocity 
So = S(k,), where k, is the critical wavenumber. The corresponding critical flutter 
frequency is oo = w(k,). Alternatively, we take the derivatives of (3.5a,b) with 
respect to k and set (aS/ak)k,ko = 0. The two resulting equations are 

am 
2w-(l+pq tanhq)+- 

ak 

-2 (Z -kS+wS - )  -4Bk3q tanhq+2kS2 = 0, (3 .5~)  

aw 
-(y+pq 
ak 

(3.54 

and along with (3.5a,b) form a system of four equations in four unknowns: w,, k,, 
8, and (aw/i3k)k,ko. By using the known solution for Q = 0, an iterative numerical 
scheme readily solves this problem for arbitrary Q. A similar process achieves the 
solution for the antisymmetric mode, where (2.2 b) is imposed. The corresponding 
unknown quantities are denoted by Go, Z,, 8, and (aG/i3Z)E-Eo. 

We note here that a computational error appears in the incompressible analysis 
of Grotberg & Reiss (1984) for the antisymmetric mode. In  that paper the parameter 
a appears in (6.1), but is incorrectly defined. The correct definition is 
aC = y tanhZ(y tanhZ+pZ)-l. This error leads to some modifications in the Q = 0 
result which will be discussed here. 

The results of (3.5) and (3.6) are presented in the next set of figures. In  figure 2 
we see an example of how the critical flutter speed depends on the damping ratio y 
for incompressible (Q = 0) and compressible (Q = 0.5) flow. In the former case, 
increasing y has first a stabilizing and then a destabilizing effect as So (8,) increases 
and then decreases with a maximum near logy = 0. The symmetric mode is always 
critical for this choice of parameters. In the latter case, the progression is again one 
of stabilization followed by destabilization, with a shift in the maximum to the right. 
However, compressibility causes a lowering of the critical velocity in this parameter 
range (we will see later that this is not always true). As y becomes very large the 

- 
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FIGURE 2. Critical flutter speeds So and 8, versus logy for Q = 0 and 0.5. 
The remaining parameter values are p = 1, B = 1. 

Q = 0.5, symmetric 
Q = 0.5, antisymmetr 

Q = 0, antisymmetric 
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log Y 
FIGURE 3. Critical flutter frequencies wo and Go versus logy for Q = 0 and 0.5. 

The remaining parameter values are p == 1, B = 1. 
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solutions for Q = 0.5 approach a common limit So (So) = 1.40, which is not seen for 
So in Grotberg & Reiss owing to the error. 

Figure 3 displays the dependence of the critical flutter frequency on y for Q = 0,0.5. 
We note that this unstable wave is travelling in the downstream direction. The 
frequencies are monotonically increasing with a common asymptote of 1.4 as y + co 
(not seen for So in Grotberg & Reiss) and an asymptote of zero as y+O. That is, the 
absence of fluid damping results in a static divergence instability, which is consistent 
with the previous inviscid models of Matsuzaki & Fung (1977) and Weaver & 
Paidoussis (1977). Compressibility clearly increases the flutter frequency for any 
given value of y. This result is not immediately intuitive, since a compressible fluid 
could be thought of as contributing to a less-stiff system. Apparently, the downstream 
wall wave is less impeded by a more deformable fluid, and consequently attains higher 
speeds. 

Figure 4(a) shows the variation of So (So) with the mass ratio p, which is 
monotonically decreasing. However, a region of the logp axis is magnified in 
figure 4(b),  where we see that the antisymmetric mode is critical for lower values of 
p, while the symmetric mode becomes critical for higher values. This crossover occurs 
at logp = - 1.104 for Q = 0 and at logp = - 1.025 for Q = 0.5. The effect of 
compressibility is to increase the flutter speeds when the symmetric mode is critical 
and to decrease the flutter speeds when the antisymmetric mode is critical. In figure 5 
the flutter frequency monotonically decreases with increasing wall mass as one 
would expect (not seen for Go in Grotberg & Reiss). The fluid compressibility raises 
the frequencies. Figure 6 isolates the compressibility effects on So (8,) as we fix all 
other parameters and vary only Q. As Q increases, there can be two qualitatively 
different results depending on the size of y. For y = 1 the critical speeds are 
monotonically decreasing, with the symmetric mode critical. For y = 0.1, however, 
increasing Q first lowers So, and then raises it until it  intersects So at log Q = 0.5. A t  
that point the antisymmetric mode is critical, and further increases in Q cause So to 
decrease and then increase monotonically. Hence compressibility plays a dual role 
(not seen in figure 2), which may be masked into a single role if the fluid damping 
is large enough. The effects on wo (ao) in figure 7 are monotonically increasing. 

- 

4. Nonlinear stability theory 
To investigate the nonlinear stability of this channel-flow problem we employ the 

PoincartGLinstedt method to analyse the system for fluid speeds near the bifurcation 
point So (So). Our intent is to relate the amplitude of the motion to the flow speed 
and flutter frequency and to see how fluid compressibility influences both. First we 
define the timescale T by 

7 = wt, (4.1) 

and a small amplitude parameter B by 

(4.2) €2 = (Y-  Yo, Y-  Yo>, 

where Yo is the basic-state plug flow represented in our vector notation of 83 : 

Yo =[ J. (4.3) 
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FIGURE 4. (a )  Critical flutter speeds So and B,, versus logp for Q = 0 and 0.5. The remaining 
parameter values are y = 1 ,  B = 1. ( b )  A magnified portion of ( a )  showing exchange of critical modes. 
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FIGURE 5. Critical flutter frequencies wo and Go versus logp for Q = 0 and 0.5. 
The remaining parameter values are y = 1, B = 1. 
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FIGURE 6. Critical flutter speeds So and so versus log Q for y = 1 and 0.1. 
The remaining parameter values are p = 1, B = 1. 
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FIQURE 7. Critical flutter frequencies wo and Go versus log& for y = 1 and 0.1. 

The remaining parameter values are p = 1 ,  B = 1. 

The angular brackets in (4.2) denote an inner product given by 

for any two vectors f and g that are periodic in x and 7.  We examine this governing 
equation in the neighbourhood of So by expanding the dependent variables in powers 
of the small amplitude parameter, 

Y = Y0+€Yl+€2Y2+€~Y3+ ..., (4.5u) 

w = W0+€Ww,+€2W2+ ..., 
s = S0+€S1+€2S2+ ..., 

(4.56) 

(4.5c) 

and inserting these expansions into (2.1)-(2.5). By ordering the resulting equations 
in powers of 8, a sequence of linear problems is found which will determine the 
unknown coefficients in (4.5b, c) and the unknown functions in (4.5~). 

To leading order, the plug-flow solution Yo is given in (4.3), while a t  O ( E )  the linear 
solutions Y1, w,, and So have already been discussed. At O(e2) the resulting governing 
equations have the form 

L . Y 2 = F 2 + S , G , + w l H ,  = R 2 ,  (4.6) 
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where the vector functions F,, G, and HI are given by 

185 

The homogeneous problem corresponding to (4.6) has a non-zero solution, as we have 
already seen. Consequently, solutions exist to the non-homogeneous problem if the 
right-hand side of (4.6) is orthogonal to the null space of the adjoint operator L*. 
This operator and its two-dimensional null-space vectors v and are derived in 
Appendix A. The solvability condition is then given by the inner-product notation 

It is readily deduced from (4.8) that 

w1 = s, = 0; (4.9) 

that is, the first corrections to the flutter speed and flutter frequency are zero. The 
particular solution to (4.6) is found by determining F2 from !Pl and using the method 
of undetermined coefficients. 

At O(8) the above process is repeated, and the governing system has the form 

LO!?', = F,+S2Gl+w2Hl = R,, (4.10) 

where G, and Hl are given in (4.7a, b) and F3 is simplified for structural nonlinearity 
much larger than fluid nonlinearity : 

(4.11) 

The solvability conditions (4.8) applied to R, yield the next corrections for w2 and 
S,, which are 

-S2A21,0* (4.12u, b)  
- 2h0 dk: A2A2, > o ,  w 2 =  

s2 = All A22 - 4 2  A21 A22 
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where 

(4.13) 

2k0 J 2 5  
A,, = -2mk0J3- , A,, = 2 d +  -2@,PU, 

Qo tanh qo Qo tanh Qo 

A,, = 4mfko P + 2fk0 , A2,=-4mfP-2 
Qo tanh Qo 

m =  Q2 (I+- 1 sinh2qo),) 

1 
qi sinh2qo 2 4q0 I (4.14) 

J = ko So - w0. I 
The system bifurcates supercritically since S, > 0, and i t  stiffens, w, > 0, as the 

fluid speed is increased beyond So. This is similar to  the incompressible case ; however, 
we would like to know how compressibility affects the amplitude and frequency of 
the nonlinear state. By rearranging (4.5c), we solve for the amplitude 6, 

(4.15) 

and see that i t  is inversely related to  4. Except for the parameter d, each term in 
( 4 . 1 2 ~ )  depends on Q. In  particular, the linear amplitude A2 is determined from the 
definition (4.2) and found to be 

(4.16) 

The entire nonlinear analysis may be repeated to determine the antisymmetric-mode 
counterparts to  (4.5). The variation of S, and 8, with Q is given in figure 8 and seen 
to be monotonically decreasing with increasing Q. Hence the amplitude of the motion 
becomes larger as the fluid becomes more compressible. The more-deformable fluid 
allows the walls to  deform to a greater degree. The effect is somewhat larger for the 
antisymmetric mode near logQ = 0, where the decrease in 8, occurs much more 
rapidly than S,. The correction to the flutter frequency is shown in figure 9, where 
w, and W, are plotted as functions of Q; the stiffening effect a t  first becomes larger 
as Q increases, while the opposite occurs for the higher &-values. 

5. Stability of the flutter states 
To test the stability of the supercritical bifurcation we examine the initial-value 

problem for S-So  small and positive by employing the two-time method. Thus we 
intend to analyse the growth of oscillations to  a limit cycle whose long-time solution 
coincides with the frequency and amplitude found in $4. We define the distance from 
so by 

s = SO+62, (5.1) 

where 6 is small, and relate this parameter to the growth rate of oscillation amplitude. 
This growth rate is scaled as the slow time 

T = S2t, (5.2) 

and we assume that the initial disturbance a t  time t = 0 is periodic and small, of 
order 6. 
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FIGURE 10. The growth rate of unstable oscillations to a stable limit 
cycle log B, versus log Q for y = 1, p = 1, B = 1. 

We proceed as outlined in Grotberg & Reiss (1984) by expanding the dependent 
variables in powers of S and solving a sequence of linear problems which lead to  a 
nonlinear ordinary differential equation for the complex amplitude A,( T) : 

aAIT + bA, + cA, At = 0. (5.3) 
The complex coefficients are related to (4.13), while the real coefficient c depends 
on d :  

a = -A,,+iA,,, b = A,,+iA,,, c = 2hdk4. (5.4a, b,  c) 

To solve (5.3) i t  is convenient to express A,(T) in polar form: 

A,(T) = p(T) ei*(T), (5.5) 

where the growth ratep(T) and the frequency shift q(T) are both real functions. When 
(5.5) is inserted into (5.3), the resulting complex equation may be separated into real 
and imaginary.parts. By eliminating q, we arrive a t  the equation for p :  

A o p ~ - B o p + C o p 3  = 0. 

The coefficients are defined by 

A, = AE2 + A;2 > 0, B, = All A,, - A, ,  A,, > 0, C, = -A,,  C. 

Equation (5.6) may be separated and integrated. The solution is found to be 

- B, K e2BoTIAo 
p 2  = 1 - c, K e2BoTIAo ’ (5.7) 
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where K depends on the initial value p(0) = p, : 

K =  3 
-Bo + c, (5.8) 

The growth rate of amplitude is proportional to B0S2. For a given 6, the fluid 
compressibility will change the growth rate of the oscillations by modifying B,, shown 
in figure 10. As Q increases from zero the growth rate increases monotonically, with 
a very rapid increase starting near logQ = 0. Note that the vertical axis is also 
logarithmic. 

6. The frictionless system: a singular limit 
In  many theories of flutter phenomena, both fluid and wall properties are chosen 

to exclude friction. In  the present analysis we can examine these cases by settingf = 0, 
g = 0 in (3.3). Since q is either real or pure imaginary the product q tanhq is always 
real, and (3.3) becomes a real quadratic for w :  

9 (6.1) 
ks+[(l+,uq tanhq)(1+Bk4)q tanhq-CcQ tanhq(kS)2]i 

1 +pq tanhq 
w =  

which has two solutions in general. The stability boundary is found by setting the 
bracketed term to zero and solving for the critical speed 8,. The corresponding 
solution of wo in (6.1) is only single-valued at the critical speed: 

kS0 . 
"' = 1 + pq tanh q ' 

that is, the eigenvalues coalesce at criticality, unlike the frictional system. The 
implication of this coalescence is clearly seen when S is increased beyond So and we 
seek the nonlinear solution. From (4.13) we see that A,, = A,, = 0 in the frictionless 
case, so that the matrix equation used to solve for wt, S, (i = 1,2) in (4.5b, c ) ,  

is singular. Consequently, in a frictionless system the branch of solutions bifurcating 
from S = So cannot be uniquely determined, since the w, and S, are linearly related, 
with one of them arbitrary. This differs significantly from the frictional system, which 
is uniquely determined, as we have seen. So when the null space of the linear operator 
reduces from two dimensions to one dimension (eigenvalue coalescence) the resulting 
singularity leads to a non-unique solution. Of course, in any experiment we have 
friction and observable bifurcation states that are not arbitrary, so the frictionless 
system is a poor analogue of flutter phenomena. 

7. The hydraulic approximation as a limit of the Orr-Sommerfeld system 
The hydraulic approximation used in this analysis leads to a stability theory which 

predicts flutter oscillations in flow through a flexible channel. The theory excludes 
the possibility of fluid instabilities, so it does not represent a modification of 
Tollmien-Schlichting waves. However, we now demonstrate that this theory- is a 

1-2 
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particular limiting form of the full viscous equations, so that  it can be related to the 
OrrSommerfeld system. To show the analogy, we consider the disturbance stream 
function for incompressible flow, $ = $(z) eik(z-ct), which is related to the disturbance 
velocities by (u, w) = (+,, -$J. If the basic-state channel-flow velocity profile is U ( z )  
then the familiar form of the linearized stream-function equation is 

kL2$+(u-c)Lq5 ie2 = U Z Z $ .  

The linear operator L = d2/dz2-k2 and the parameter s2 = R-I, where R is the 
Reynolds number. We let the velocity be scaled on C = (E/p,)t  and define R = bC/v. 
If a basic-state plug flow is assumed then U = S, and in the limit e 2 + 0 ,  (7.1) simplifies 
to 

( S - c )  Lq5 = 0, (7.2) 

subject to inviscid boundary conditions. For example, the symmetric-mode eigen- 
function must satisfy the midline condition $(O)  = 0, and is readily found to be 

q5 = sinh kz (7.3) 

for S $. c. The kinematic boundary condition of no cross-flow at the lower wall, 
z = - 1 + 7 eik(z-ct), has the form 

( S - c ) q  = -$ ( z  = - 1 ) .  (7.4) 

By balancing the full viscous and pressure forces with the plate response, the normal 
component of the plate equation can be shown to be 

1 (-(k~)~p-2ikcG+Bk~+1)~-(~-c)q5~--e~(q5~,,-3k~q5,) = 0 ( z  = l) ,  (7.5) 
k 

where the coefficient of 7 is the familiar plate response, the middle term is the inviscid 
pressure and the coefficient of c2 represents the viscous pressure and normal stress. 
We insert (7.3) and (7.4) into (7.5) and examine the stability boundary by setting 
Im (c )  = 0. Before taking the limit of e2+0 ,  we separate (7.5) into its real and 
imaginary parts : 

c2( 1 + p k  tanh k )  k-2ckS- (1  + Bk4)  tanh k +  kS2 = 0, (7.6,) 

cGk tanh k-c2k2(S-c)  = 0. (7.6b) 

We let the plate damping G = Ten and consider the limit of (7.6b) as E approaches 
zero : 

c r k  tanh k = lim E ~ - ~ ( S - C ) .  
€4 

(7.7) 

For ?z < 2 the limit gives the static divergence result c = 0 whenever r $. 0. This is 
similar to the previous theories (Matsuzaki & Fung 1977, 1978; Weaver & Paidoussis 
1977), which use inviscid-flow theory and damped walls. From ( 7 . 6 ~ )  the divergence 
velocity is found to  be 

S ,  = [ ( 1  + Bk; tanh k]: 
(7.8) 
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If n > 2 then S - c  = 0, which is not permitted in (7.2). However, if n = 2 then both 
terms in (7.7) balance. This limit may be interpreted on a physical basis as one in 
which the fluid viscosity, though small, is comparable to the wall viscosity as e2 + 0. 
Since the inviscid eigenfunction (7.3) is used we see that the boundary layer is thin 
enough that, to leading order, it  does not influence the flow field but does dictate the 
plate instability to be flutter, c 4= 0, instead of static divergence. Indeed, by defining 
r = pk2/y ,  (7.6a, b) reduce to the flutter instability criteria found in Grotberg & 
Reiss (1984) and the present paper for Q = 0 : 

(1 +Ilk4)  tanh k 
c = a s ,  s = [  a2pk tanh k + (1 - a)2 

where a = y ( ~ + p k  tanh k)-'. The linear stability of the hydraulic approximation and 
this limit of the full equations are identical, and one can see that their respective 
nonlinear stabilities are also the same, since the viscous terms are all linear. The 
hydraulic approximation differs from this limit in the basic state, since the former 
yields a constant pressure gradient and the latter does not. The external plate 
conditions were chosen to cancel the effects of any internal pressure gradient as the 
basic channel shape of parallel plates, so this does not present a difficulty for the 
stability problem. 

8. Conclusions 
In the present analysis we have examined the stability of compressible flow through 

a two-dimensional flexible channel. In  general, the presence of fluid damping leads 
to flutter instability in the symmetric (antisymmetric) mode at  a critical speed So (8,) 
with frequency w, (?3,,). Fluid compressibility causes increases or decreases in So (So) 
and can change the instability from one mode to the other. However, w, (Go) 
monotonically increases with compressibility, since the more deformable fluid is less 
resistant to the wall wave. In  the nonlinear theory we found that this greater 
deformability leads to larger-amplitude motions, which have faster growth rates to 
the limit cycle. In  addition, the limit of a frictionless system proved to be singular 
in that the nonlinear state is not uniquely determined. The hydraulic approximation 
incorporated in the analysis is a particular limit of the full Orr-Sommerfeld system. 

This research was supported by the National Science Foundation Presidential 
Young Investigator Award in conjunction with General Motors Corporation and The 
Whitaker Foundation. 

Appendix A 
The linear operator L and its adjoint operator L* have the relation 

<Pi, L - q )  = <y,, L*.Y,), 

where the angular brackets stand for the inner product 
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Through integration by parts, the adjoint operator is found to be 

J .  B. Gotberg and T .  R.  Shee 

0 0 

ax ax4 

- ( , ~ ~ - 2 g - + B - + l  a 2  a a 4  

a a 0 
- 2f ---so- 

at ax 
at  S = So. 

The homogeneous adjoint problem for the symmetric mode is 

L** Y* = 0, 

with the boundary condition @,(x ,O, t )  = 0. The null-space solution of (6.2) is 
two-dimensional, with 

(A 2) 

Y* = Y;+Y; 

= A: 

- 

1 [2f + i(wo - k, So)]  cosh qz 
q sinh q 

1 2f + i(wo - k, So) 
q tanhq 

- 

eieo + c .c., 

where 8, = k, x- wo t .  The arbitrary constant A: is complex in general, and thus gives 
two linearly independent solutions corresponding to the eieo and the eai*o terms 
respectively. We can solve for w1 and S, by the Fredholm alternative (4.8). 

Appendix B 
a = local sound speed, 2b = channel depth, 

. .  
Yh3 

D =  
D 

6h* bah2E’ 12(1-cr2)’ 
a =  
E = elastance of spring supports, 

~ ~~ 

f*b 2f = - 
C ’  

f* = fluid-damping coefficient, 

g*Pb g* = wall-damping coefficient, 2g = ~ 

C ’  
h = wall thickness, M = Mach number, 

k = -, dimensionless wavenumber, 

dimensionless pressure, p =- 

Q = - , compressibility parameter, 

S = -, dimensionless speed, 

27r 
h 
P* 

C 
a 
U 
C 

Pr F’ 
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t =  

U E  

x =  

Y E  

Ct* -, dimensionless time, 
b 

uniform fluid speed, 
X* 
- , dimensionless position, 
b 

elastic modulus, 

W = wall position, 

+% 
J y = -, damping ratio, 

A = -, dimensionless wavelength, 

g* 
A* 
b 

Pw h 
peb 

,u = -, mass ratio, 

cr = Poisson’s ratio, v = kinematic viscosity, 
pw = wall density, pp = fluid density, 

@* 
bC 

@ = -, dimensionless velocity potential, 

w*b 
C 

w = - , dimensionless radian frequency. 
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